

Binary Search Trees
Part Two

Outline for Today
● Freeing Trees

● Cleaning up our messes.
● Balanced Trees

● How fast are BST operations?
● Range Searches

● A useful hybrid algorithm.

Recap from Last Time

Binary Search Trees
● The data structure we have

just seen is called a binary
search tree (or BST).

● The tree consists of a
number of nodes, each of
which stores a value and
has zero, one, or two
children.

● All values in a node’s left
subtree are smaller than
the node’s value, and all
values in a node’s right
subtree are greater than
the node’s value.

-2

-1

1

2

3

6

3

4

7

9

0

6

4

865

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

New Stuff!

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg

Freeing a Tree
● Once we're done with a tree, we need to free

all of its nodes.
● As with a linked list, we have to be careful not

to use any nodes after freeing them.

4
2

1 3

6

5 7

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Which of these options work?

Answer at https://cs106b.stanford.edu/pollev

void deleteTree(Node* root) {
 if (root == nullptr) return;

 delete root;
 deleteTree(root->left);
 deleteTree(root->right);
} A

void deleteTree(Node* root) {
 if (root == nullptr) return;

 delete root;
 deleteTree(root->right);
 deleteTree(root->left);
} B

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 delete root;
 deleteTree(root->right);
} C

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->right);
 delete root;
 deleteTree(root->left);
} D

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 deleteTree(root->right);
 delete root;
} E

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->right);
 deleteTree(root->left);
 delete root;
} F

https://cs106b.stanford.edu/pollev

void deleteTree(Node* root) {
 if (root == nullptr) return;

 delete root;
 deleteTree(root->left);
 deleteTree(root->right);
} A

void deleteTree(Node* root) {
 if (root == nullptr) return;

 delete root;
 deleteTree(root->right);
 deleteTree(root->left);
} B

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 delete root;
 deleteTree(root->right);
} C

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->right);
 delete root;
 deleteTree(root->left);
} D

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 deleteTree(root->right);
 delete root;
} E

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->right);
 deleteTree(root->left);
 delete root;
} F

Which of these options work?

Answer at https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 deleteTree(root->right);
 delete root;
}

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->right);
 deleteTree(root->left);
 delete root;
}✓ ✓

Which of these options work?

Answer at https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Postorder Traversals
● The particular recursive pattern we just saw is

called a postorder traversal of a binary tree.
● Specifically:

● Recursively visit all the nodes in the two subtrees,
in whichever order you’d like.

● Visit the node itself.
● This contrasts with the inorder traversal we

used to print the contents of a BST.
● That’s where we recursively visit the left subtree,

then the node itself, then the right subtree.

Tree Efficiency

How fast are BST lookups?

How fast are BST insertions?

Tree Terminology
● The height of a tree is the number of links

in the longest path from the root to a leaf.
By convention, an empty tree has height -1.

4

2

1 3

6

5 7 Height
two

Tree Terminology

1
2

3
4

5
6

7

● The height of a tree is the number of links
in the longest path from the root to a leaf.
By convention, an empty tree has height -1.

Height
six

Tree Terminology

1

● The height of a tree is the number of links
in the longest path from the root to a leaf.
By convention, an empty tree has height -1.

Height
zero

Tree Terminology
● The height of a tree is the number of links

in the longest path from the root to a leaf.
● By convention, an empty tree has height -1.

Height
-1

Building a BST

Draw these trees. What is the
height of each tree?

Answer at
https://cs106b.stanford.edu/pollev

● First, draw the BST formed by inserting the values
1, 3, 5, 7, 2, 4, 6 into an empty tree.

● Then draw what you get if you insert the values
4, 6, 5, 2, 1, 7, and 3 into an empty tree.

https://cs106b.stanford.edu/pollev

Building a BST
● First, draw the BST formed by inserting the values

1, 3, 5, 7, 2, 4, 6 into an empty tree.
● Then draw what you get if you insert the values

4, 6, 5, 2, 1, 7, and 3 into an empty tree.

1

3

5

7

2

4

6

4

2 6

1 3 5 7

Efficiency Questions
● The time to add

an element to a
BST (or look up
an element in a
BST) depends
on the height
of the tree.

● The runtime is
O(h), where h
is the height of
the tree.

4
2

1 3

6

5 7

1
2

3
4

5
6

7

8

8

Tree Heights
● What is the maximum and minimum possible

height of a tree with n nodes?
● Maximum height: all nodes in a chain. Height

is O(n).

1
2

3
4

5
6

7

Tree Heights
● What is the maximum and minimum possible

height of a tree with n nodes?
● Maximum height: all nodes in a chain. Height

is O(n).
● Minimum height: tree is as complete as

possible. Height is O(log n).

4
2

1 3

6

5 7

You can only double
something O(log n)
times before it
exceeds n.

Balanced Trees
● A binary search tree is called balanced

if its height is O(log n), where n is the
number of nodes in the tree.

● Balanced trees are extremely efficient:
● Lookups take time O(log n).
● Insertions take time O(log n).
● Deletions take time O(log n).

● Question: How do you balance a tree?

Balanced Trees
● A self-balancing tree is a BST that reshapes itself on

insertions and deletions to stay balanced.
● There are many strategies for doing this. They’re

beautiful. They’re clever. And they’re beyond the scope
of CS106B.

● Some suggested topics to read up on, if you’re curious:
● Red/black trees (take CS161 or CS166!)
● AVL trees (covered in the textbook.)
● Splay trees (trees that reshape on lookups – take CS166!)
● Scapegoat trees (yes, that’s what they’re called.)
● Treaps (half binary heap, half binary search tree!)
● Zip trees (and their cousins the zip-zip trees.)

What if you do no balancing at all?

A Tale of Two Trees
● We have a thermometer that gives a temperature

reading at 4PM each day. We insert the
temperature readings into a BST each day,
starting on January 1 and ending on December 31.

● There’s a marathon race. We insert the names of
the athletes into a BST as they cross the finish
line.

Which BST will be more balanced?
Which BST will be less balanced?

Why?

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Temperature readings, inserted
daily at 4PM, from January 1 to

December 31.

(Data source: NOAA: SFO readings from Jan 1 – Dec 31 2010)

50°F

55°F

60°F

65°F

70°F

75°F

Balanced Trees
● Theorem: If you

start with an empty
tree and add in
random values, then,
with high probability,
the tree is balanced.

● Proof: Take CS161!
● Takeaway: If you’re

adding elements to a
BST and their values
are actually random,
then your tree is
likely to be balanced.

10

135

16111 7

1492

19

20

8

Range Searches

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [103, 154].

106

103 110

108

107 109 154

143

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [99, 105].

103

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [150, 170].

166

154

161

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [137, 138].

Range Searches
● We can use BSTs to do range searches,

in which we find all values in the BST
within some range.

● For example:
● If the values in the BST are dates, we can

find all events that occurred within some
time window.

● If the values in the BST are number of
diagnostic scans ordered, we can find all
doctors who order a disproportionate
number of scans.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

x

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

x

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

x

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

x

Range Searches
● A hybrid between an inorder traversal and a

regular BST lookup!
● The idea:

● If the node is in the range being searched, add it to
the result.

● Recursively explore each subtree that could
potentially overlap with the range.

● Fun fact: The runtime of a range search is
O(h + z), where h is the height of the tree and z
is the number of items in the range. Come chat
with me after class if you’re curious why this is!

To Summarize:

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

struct Node {
 Type value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};

bool contains(Node* root, const string& key) {
 if (root == nullptr) return false;
 else if (key == root->value) return true;
 else if (key < root->value) return contains(root->left, key);
 else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
 if (root == nullptr) {
 root = new Node;
 node->value = key;
 node->left = node->right = nullptr;
 } else if (key < root->value) {
 insert(root->left, key);
 } else if (key > root->value) {
 insert(root->right, key);
 } else {
 // Already here!
 }
}

4

2

1 3

6

5 7

1
2

3
4

5
6

7

void printContentsOf(Node* root) {
 if (root == nullptr) return;

 printContentsOf(root->left);
 cout << root->value << endl;
 printContentsOf(root->right);
}

void deleteTree(Node* root) {
 if (root == nullptr) return;

 deleteTree(root->left);
 deleteTree(root->right);
 delete root;
}

void printInRange(Node* tree, const string& low, const string& high) {
 if (tree == nullptr) return;

 if (high < tree->value) {
 printInRange(tree->left, low, high);
 } else if (low > tree->value) {
 printInRange(tree->right, low, high);
 } else {
 printInRange(tree->left, low, high);
 cout << tree->value << endl;
 printInRange(tree->right, low, high);
 }
}

Your Action Items
● Read Chapter 16.1 – 16.2.

● All about BSTs!
● Work on Assignment 7.

● Put in a request for a section swap? You’ll hear from us by tonight.
● If you are following our timetable, you’ll have finished the

labyrinth and doubly-linked list warmups and should be in the
middle of Particle Systems now.

● Remember that you can use late days on this assignment and
cannot use them on Assignment 8. Plan accordingly.
– Don’t use late days unnecessarily; that eats into your time for A8.
– Don’t save your late days “just in case” you need them on A8, since you

can’t use them there.
● Need help? Have questions? Come talk to us in LaIR or during

office hours.

Next Time
● Multiway Trees

● Trees with more than two children per node.
● JSON

● Working with real-world data.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

