
  

Binary Search Trees
Part Two



  

Outline for Today
● Freeing Trees

● Cleaning up our messes.
● Balanced Trees

● How fast are BST operations?
● Range Searches

● A useful hybrid algorithm.



  

Recap from Last Time



  

Binary Search Trees
● The data structure we have 

just seen is called a binary 
search tree (or BST).

● The tree consists of a 
number of nodes, each of 
which stores a value and 
has zero, one, or two 
children.

● All values in a node’s left 
subtree are smaller than 
the node’s value, and all 
values in a node’s right 
subtree are greater than 
the node’s value.
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A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

New Stuff!



  

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg



  

Freeing a Tree
● Once we're done with a tree, we need to free 

all of its nodes.
● As with a linked list, we have to be careful not 

to use any nodes after freeing them.
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Which of these options work?

 

Answer at https://cs106b.stanford.edu/pollev

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  delete root;
  deleteTree(root->left); 
  deleteTree(root->right);
} A

void deleteTree(Node* root) {
  if (root == nullptr) return;
  

  delete root;
  deleteTree(root->right);
  deleteTree(root->left); 
} B

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->left);
  delete root;
  deleteTree(root->right);
} C

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->right);
  delete root;
  deleteTree(root->left);
} D

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->left);
  deleteTree(root->right);
  delete root;
} E

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->right);
  deleteTree(root->left);
  delete root;
} F

https://cs106b.stanford.edu/pollev
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https://cs106b.stanford.edu/pollev


  

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->left);
  deleteTree(root->right);
  delete root;
}

void deleteTree(Node* root) {
  if (root == nullptr) return;
 

  deleteTree(root->right);
  deleteTree(root->left);
  delete root;
}✓ ✓

Which of these options work?
 

Answer at https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev


  

Postorder Traversals
● The particular recursive pattern we just saw is 

called a postorder traversal of a binary tree.
● Specifically:

● Recursively visit all the nodes in the two subtrees, 
in whichever order you’d like.

● Visit the node itself.
● This contrasts with the inorder traversal we 

used to print the contents of a BST.
● That’s where we recursively visit the left subtree, 

then the node itself, then the right subtree.



  

Tree Efficiency



  

How fast are BST lookups?

How fast are BST insertions?



  

Tree Terminology
● The height of a tree is the number of links 

in the longest path from the root to a leaf.
By convention, an empty tree has height -1.

4

2

1 3

6

5 7 Height 
two



  

Tree Terminology
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● The height of a tree is the number of links 
in the longest path from the root to a leaf.
By convention, an empty tree has height -1.

Height 
six



  

Tree Terminology
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● The height of a tree is the number of links 
in the longest path from the root to a leaf.
By convention, an empty tree has height -1.
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Tree Terminology
● The height of a tree is the number of links 

in the longest path from the root to a leaf.
● By convention, an empty tree has height -1.

Height 
-1



  

Building a BST

Draw these trees. What is the
height of each tree?

Answer at
https://cs106b.stanford.edu/pollev

● First, draw the BST formed by inserting the values
1, 3, 5, 7, 2, 4, 6 into an empty tree.

● Then draw what you get if you insert the values
4, 6, 5, 2, 1, 7, and 3 into an empty tree.

https://cs106b.stanford.edu/pollev


  

Building a BST
● First, draw the BST formed by inserting the values

1, 3, 5, 7, 2, 4, 6 into an empty tree.
● Then draw what you get if you insert the values

4, 6, 5, 2, 1, 7, and 3 into an empty tree.
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Efficiency Questions
● The time to add 

an element to a 
BST (or look up 
an element in a 
BST) depends 
on the height 
of the tree.

● The runtime is 
O(h), where h 
is the height of 
the tree.
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Tree Heights
● What is the maximum and minimum possible 

height of a tree with n nodes?
● Maximum height: all nodes in a chain. Height 

is O(n).
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Tree Heights
● What is the maximum and minimum possible 

height of a tree with n nodes?
● Maximum height: all nodes in a chain. Height 

is O(n).
● Minimum height: tree is as complete as 

possible. Height is O(log n).
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You can only double 
something O(log n) 
times before it 
exceeds n.



  

Balanced Trees
● A binary search tree is called balanced 

if its height is O(log n), where n is the 
number of nodes in the tree.

● Balanced trees are extremely efficient:
● Lookups take time O(log n).
● Insertions take time O(log n).
● Deletions take time O(log n).

● Question: How do you balance a tree?



  

Balanced Trees
● A self-balancing tree is a BST that reshapes itself on 

insertions and deletions to stay balanced.
● There are many strategies for doing this. They’re 

beautiful. They’re clever. And they’re beyond the scope 
of CS106B.

● Some suggested topics to read up on, if you’re curious:
● Red/black trees (take CS161 or CS166!)
● AVL trees (covered in the textbook.)
● Splay trees (trees that reshape on lookups – take CS166!)
● Scapegoat trees (yes, that’s what they’re called.)
● Treaps (half binary heap, half binary search tree!)
● Zip trees (and their cousins the zip-zip trees.)



  

What if you do no balancing at all?



  

A Tale of Two Trees
● We have a thermometer that gives a temperature 

reading at 4PM each day. We insert the 
temperature readings into a BST each day, 
starting on January 1 and ending on December 31.

● There’s a marathon race. We insert the names of 
the athletes into a BST as they cross the finish 
line.

Which BST will be more balanced?
Which BST will be less balanced?

Why?
  

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev


  

Temperature readings, inserted
daily at 4PM, from January 1 to

December 31.
 

(Data source: NOAA: SFO readings from Jan 1 – Dec 31 2010)
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Balanced Trees
● Theorem: If you 

start with an empty 
tree and add in 
random values, then, 
with high probability, 
the tree is balanced.

● Proof: Take CS161!
● Takeaway: If you’re 

adding elements to a 
BST and their values 
are actually random, 
then your tree is 
likely to be balanced.
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Range Searches
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Range Searches
● We can use BSTs to do range searches, 

in which we find all values in the BST 
within some range.

● For example:
● If the values in the BST are dates, we can 

find all events that occurred within some 
time window.

● If the values in the BST are number of 
diagnostic scans ordered, we can find all 
doctors who order a disproportionate 
number of scans.



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.
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Range Searches
● A hybrid between an inorder traversal and a 

regular BST lookup!
● The idea:

● If the node is in the range being searched, add it to 
the result.

● Recursively explore each subtree that could 
potentially overlap with the range.

● Fun fact: The runtime of a range search is 
O(h + z), where h is the height of the tree and z 
is the number of items in the range. Come chat 
with me after class if you’re curious why this is!



  

To Summarize:



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

struct Node {                     
    Type value;                   
    Node* left;  // Smaller values
    Node* right; // Bigger values 
};                                



  

bool contains(Node* root, const string& key) {
    if (root == nullptr) return false;
    else if (key == root->value) return true;
    else if (key <  root->value) return contains(root->left,  key);
    else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
    if (root == nullptr) {
        root = new Node;
        node->value = key;
        node->left = node->right = nullptr;
    } else if (key < root->value) {
        insert(root->left, key);
    } else if (key > root->value) {
        insert(root->right, key);
    } else {
        // Already here!
    }
}
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void printContentsOf(Node* root) {
    if (root == nullptr) return;

    printContentsOf(root->left);
    cout << root->value << endl;
    printContentsOf(root->right);
}

void deleteTree(Node* root) {
    if (root == nullptr) return;

    deleteTree(root->left);
    deleteTree(root->right);
    delete root;
}



  

void printInRange(Node* tree, const string& low, const string& high) {
    if (tree == nullptr) return;

    if (high < tree->value) {
        printInRange(tree->left, low, high);
    } else if (low > tree->value) {
        printInRange(tree->right, low, high);
    } else {
        printInRange(tree->left, low, high);
        cout << tree->value << endl;
        printInRange(tree->right, low, high);
    }
}



  

Your Action Items
● Read Chapter 16.1 – 16.2.

● All about BSTs!
● Work on Assignment 7.

● Put in a request for a section swap? You’ll hear from us by tonight.
● If you are following our timetable, you’ll have finished the 

labyrinth and doubly-linked list warmups and should be in the 
middle of Particle Systems now.

● Remember that you can use late days on this assignment and 
cannot use them on Assignment 8. Plan accordingly.
– Don’t use late days unnecessarily; that eats into your time for A8.
– Don’t save your late days “just in case” you need them on A8, since you 

can’t use them there.
● Need help? Have questions? Come talk to us in LaIR or during 

office hours.



  

Next Time
● Multiway Trees

● Trees with more than two children per node.
● JSON

● Working with real-world data.
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